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A precise meaning is given to the idea of a kink theory approximating a vector- 
or vector-bundle-valued theory. It is shown that vector theories taking values in 
a vector bundle with group S O ( n -  s,s; R), acting naturally, do not approximate 
any kink theory. It is further shown that, where a kink theory is approximated 
by a vector bundle theory, the field equations in the vector theory can give rise 
to field equations in the kink theory. The theory of Skyrme and the sine- 
Gordon theory are of this form. An example is given of a nonlinear modifica- 
tion of electromagnetism having solitonlike solutions. 

1. INTRODUCTION 

A kink theory is, roughly speaking, a field theory where the field takes 
values in a manifold that is not a vector space (or vector bundle). Such a 
theory was investigated from 1958 by Skyrme (1958; see also 1971), while 
the generalized idea of kink theory was introduced in 1959 by Finkelstein 
and Misner (1959). The concept is of interest, first, because some accepted 
field theories (e.g., general relativity) can be regarded as kink theories; and, 
second, because the particular subclass of kink theories to be considered 
here give a very simple way of incorporating nonlinearity into vector- 
valued ("straight") field theories and offers the hope of reaching rigorous 
quantized nonlinear theories. 

While the motivation stems from the quantized versions of kink 
theory, it has proved necessary to treat the classical and quantum cases 
separately. Here the classical case will be described in a general context 
which brings out the way kink theories can arise from "curving up" a 
straight theory. Quantization will be discussed in a subsequent paper where 
heavy restrictions will be placed on the theory, for technical reasons, 
thereby obscuring the very natural geometrical setting given here. 

715 

0020-7748/79/1000-0715503.00/0 �9 1980 Plenum t~blishi~g Corporation 



716 Clarke 

2. DEFINITIONS 

We shall be concerned with a kink theory and a straight theory that 
are related to a common principal bundle ~=(P, rr, M,G); where P is the 
space of the bundle, er is a projection from P onto space- t ime M and G is 
a Lie group acting on P on the right (p---)pg for g E G) whose action is 
simply transitive on each fiber r A typical example is furnished by 
taking P to be the bundle L of all pseudo-orthonormal frames over 
space-t ime (with respect to the Lorentz metric of general relativity), with 
G = E, the Lorentz group. 

We recall the definition of an associated bundle. If T: G---~ Homeo (X) 
is an effective action of G on a topological space X, then we define an 
equivalence relation on P • X by 

(p,x)~(pg,  T(g-l)(x))  ( g E G )  

The fiber bundle ~ r =  (E r, ~r), where E r is the quotient space 

with projection 

=(e x x ) / -  

is called the bundle associated to ~ by T with fiber X. 
A straight field theory associated with ~ is a theory about certain 

sections O:M--,E r (called fields) where T is a linear representation of G in 
a finite-dimensional (real or complex) vector space V--=X; so that ~ r is in 
this case a vector bundle. For  example, taking ~=-~=(L,~r ,M,E),  the 
frame bundle, V= R 4 and T the standard action of E on R4 gives for E r 
the tangent bundle T(M), whose cross sections q~ are vector fields. 

A kink theory, in the most general sense, is a theory in which the fields 
are sections of a fiber bundle E over M whose fibers are not homotopically 
trivial. In Skyrme's theory (1978; 1971) E =  M • S 3 (a product  bundle) and 
the fields are maps ep:M--)S 3. In general relativity the basic field might be 
regarded as the metric, which is a section of the bundle of all second-rank 
covariant symmetric tensors over M with Lorentz signature (+  - - -), a 
subbundle of the bundle T ~ T*(M)(~)T*(M) of all covariant symmetric 
tensors. Although T ~ is a vector bundle, the subset of tensors with 
Lorentz signature is not: its fiber is homotopic to projective 3-space 
(Shastri et al., 1980). 

A kink theory is of interest in the following two cases: (i) M, space-  
time, is homotopicaUy nontrivial; or (ii) we require, as a boundary condi- 
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tion on the fields, that they can be extended to a fiber bund le /~  over M_ 
where M is a space containing M as a dense open subset and is homotopi- 
cally nontrivial. 

An example of (ii) is the case M =  R~X R 3 (time x space), ~ t =  RlX 
S 3, corresponding to setting boundary conditions as the fields tend to an 
ideal point at spatial infinity adjoined to R 3. 

In these two cases there is the possibility that some sections (fields) 
cannot be deformed one into another; when this phenomenon occurs the 
theory is said to admit kinks (Finkelstein, 1966). 

Suppose we are given a straight theory whose fields are sections of a 
bundle with space E ~ associated to ~ by a linear representation r in a 
vector space V. A kink theory with fields in a bundle E will be said to 
correspond to E ~ if the following conditions hold: 

C(i) E = E  r, where T is a 1-1 homomorphism of G into the 
endomorphisms of a Lie group K. 

C(ii) There exists a linear isomorphism/9: V---~k (where k is the Lie 
algebra of K), satisfying 

C(iii) T(g).  o 0 = O o'r(g). 
Equivalently, in this case we shall say that E ~ approximates E r, in a 

sense which we shall now explain. 
A bundle satisfying C(i) will be called a Lie group bundle. It is easily 

verified that each fiber is a Lie group with multiplication given by 

[ (p,k,) ] [ (p,k~) ] = [ (p,k, k 9 ] 

Moreover, the Lie algebra of the fiber ~ r r - l ( x )=  :Kx, which we can 
identify with Tex (Kx) (where ex is the identity element of K~) is precisely 
the fiber ~rt-l(x) ffi :k x of the bundle E t associated to ~ by the representa- 
tion 

t: g--> T( g).:k-->k 

of G. But we can regard Tex (K~) as a vector space "approximation" to K x, 
near ex; and so the bundle E t= u~T~x (K~) is, in this sense, an approxima- 
tion to E T. Now, condition (iv) implies that E t ~ E  ~ (a vector bundle 
isomorphiSm), and thus it is reasonable to call E ~ also an approximation to 
E T, the approximation being close near the identity section m x{ ex }. 

We are more or less forced into this definition of a kink theory 
"corresponding to" a straight theory if we require that the kink theory have 
sufficient structure to enable one to define field equations (as we shall do 
below) and also that there be a distinguished section e of E (here the 
identity section x~->ex) with the property that 

Ux Tr I( x) ) ~  E ~" 
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(which seems to be the only precise meaning that can be given to the idea 
of E approximating E ' ) .  

3. EXISTENCE OF KINK T H E O R I E S  

We shall construct several examples in Section 4 below. One can, 
however, ask whether for any given straight theory there exists a corre- 
sponding kink theory; i.e., whether any straight theory can be kinked. A 
negative answer is provided by the following 

Theorem. Let G be S O ( n - s , s ; R )  (1 < s < n - 1 )  and let r be the 
standard action of G on R ~. Then there exists no kink theory 
corresponding to ~ .  

Proof. Suppose there were such a theory, f T, If K, the standard 
Lie-group fiber of ~ r, is not simply connected, then we can extend T to the 
covering space / f  (by extending .the representation t on the algebra), 
denoting the resulting theory by ~ r. 

For simplicity let us identify t with r (i.e., we identify k with R ~ by a 
choice of basis in k). The action of G on k allows us to fix a quadratic form 
g on k of signature ( n -  s,s) invariant under G (up to a constant)= g then 
defines a pseudo-Riemannian metric o n / ~  by left translation in K, which 
makes K a space of constant curvature (since G acts o n / ~  as a full group 
of isotropies). Since/~ is simply connected, it must be one~of ~s,  ~~ R~,~ Hs ,n 
where R~ is R ~ with metric g~ of signature ( n - s , s )  and 5~, H~ are the 
universal covering spaces of a connected component of 

- ~ n + l  n+ l (x ,x )=  1) 

H~: = { x E ~ n + l .  n+l . . . .  1} t~s+l.g;+ 1 ~ x , x ) -  

(u[~ to a scale factor) (Wolf, 1974, p.67). Thus the isometry group o f / ~  is 
S O ( n  + 1 - s,s), E (n  - s,s), S O ( n  - s ,s  + 1), where E(n  - s ,s)  is the pseudo- 
Euclidean group and S O  denotes the covering corresponding to the cover- 
ings of 5 and H. 

But / f  acts on itself by left translation as a normal subgroup of 
isometrics; whereas S O ( p ,  q) is simple. Thus the only possibility is K =  R~. 

Hence K is an identification space of R~ admitting G as a (globally 
defined) group of isotropies. Thus K = R~, and ~ r is not a kink theory. 
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4. EXAMPLES 

4.1 The Trivial Case. Suppose that G=(1} ,  P=M•  K. 
Then K can be chosen arbitrarily to yield a kink theory whose fields are 
maps M ~ K ,  with an approximating straight theory with fields M---~k. This 
is the situation for the sine-Gordon field ( K =  R/2~rZ, k = R ) ,  Skyrme's 
S3-theory (1971) [K= SU(2),k= R 3] and the general situation usually con- 
sidered in kink theory (Finkelstein and Misner, 1959; Williams and 
Zvengrowski, 1977). 

Since this case is so widely applicable, it might seem that most of this 
paper is quite otiose. And this is true at the topological level: most of the 
straight theories that are seriously considered by physicists work in bundles 
whose group is reducible to the identity: they are trivial bundles. But when 
we introduce a connection in P, as we do below in order to define field 
equations, then G will in general be the holonomy group of the connection 
and as such plays an essential role. In the language of particle physics, it 
provides the gauge transformations of the theory, and our definition of 
correspondence between straight and kinked theories requires that this 
gauge freedom be preserved. If G and r are such that there is no 
corresponding kink theory (as in Section 3 above), but ~ is trivial, then a 
kink theory can be introduced but only by breaking the gauge symmetry in 
order to reduce G. 

We note that Skyrme's theory can also be viewed as a gauge theory 
with G = SO(3) ,K= SU(2), T defined by requiring fiG) to be the group of 
isotropies at the identity of SU(2) and P = M • G (Skyrme, 1971). 

4.2. The Adjoint Construction. Suppose G = K. Then we can take T to 
be the adjoint action 

Ad(g)(k)  = g k g -  ' 

If we take ~--2t to be the pseudo-orthonormal frame bundle on space- 
time, with G = K = S O + ( 1 , 3 ) = E  (assuming full orientability), then the 
fields in ~ Ad are tensor-valued fields satisfying 

The corresponding straight theory [since k =  so( l ,3)=skew matrices] has 
bivector-valued fields 
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(e.g., electromagnetism). The approximation between the two is expressed 
by 

5. COVARIANT DERIVATIVES 

In order to introduce field equations we shall define a covariant 
derivative in ~ r which reduces to the usual definition when T is a linear 
representation. 

Proposition. Given ~r=(Er,  Trr) associated to a principal bundle 
with a connection, and a vector field X E C ~(M, T(M)), then there exists a 
covariant derivative 

v~: c ~(~ r)-~c ~(~,) 

from the smooth sections of ~ r into those of f t satisfying the usual axioms 
for a derivation. 

Proof Write X for some X(x)~ Tx(M ). Choose C:[O, 1)-->M with 
C(O)=X and choose any p E~r-l(x).  Let C~ be the horizontal lift of C 
through initial point p. Given ~ ~ C ~(~ r), define ~p :[0, 1)-->K by 

~(c(O) = [(c;(t ) ,~(t)) ]  ~ E  ~ 

~.(0) is in T,,.~o~(K); we regard it as an element of k and represent it in 
Te(K) (e = identity of K) by forming 

5 = L(~,  (0) - ' ) .@(0)  E Te(K) = k (5.1) 

[where L(a)(x)=ax is left translation]. Define 

Vf~d?= [ (p,vp) ] E E t 

We must check that this is independent of the choice of p by altering to 
p' =pg, g E G. Then 

,(c(t))= [ ( g*(t)g, r( g % ( O )  ] = [ (c*,'(Og, ~,'(t)) ] 
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So 

Now 

vp,= L({ T( g-l)(qjp (0)) }--I). T(g-').q~p(0) (5.2) 

where 

v;,= [(p,~p)] 
This is independent of p by virtue of C(iii), Section 2. 

The construction of higher derivatives is now straightforward. That is, 
we define V~176 so that V~ T*(M) |  This bundle is a vector 
bundle associated to the bundle (X@O=(L| or, M,s • G), with stan- 
dard fiber ~4X V~ and ~@4 acquires a connection from the Levi-Civita 

L({ r(g-')(~p(0))}-') r(g-')(~)-- ~(~-') G(0)-')-r(g-')(k) 

r ( g - ' ) (  qJp(0)- 'k ) 

r( g-1)( L( ~p( o)- l)( k ) ) 

for all k E K. Thus (5.2)becomes 

~p,= r ( g - ' ) . L ( ~ A 0 ) -  ' ) G ( 0  ) 

= T(g-').vp from (5.1) 

= t (g - l )vp  

Hence [(p', vp,)] = [(pg, t ( g -  l)vp)] 

= [(p,v.)]  as required �9 

Corollary. If 4 r is a kink theory corresponding to @~, then there 
exists a covariant derivative 

Vo .C o~ r~__~C~re~ 

Proof Given q~ ~ C ="(4 r), define 

v~ '~A] 
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connection on h and the given connection on ~. Thus T * ( M ) ~ E  "~ has a 
connection in the usual sense of vector bundles, and we can differentiate 
V~ covariantly in the usual sense, forming V V~ . . . . .  V k V~ 

6. FIELD EQUATIONS 

We suppose given a principal bundle ~ with a connection, a straight 
theory U (z a representation of G in V) and a ~-(G)-invariant bilinear form 
b v on V. The space-time M is furnished with its Lorentz metric g. The 
form b v then induces a bilinear form b on the fibers of E ". In this situation 
the field equations typically assume the form 

F( gx, bx, ~(x), V q~(x), V2+(x) . . . .  ) = 0 (6.1) 

(x E M), where 7~p, V2~k, etc. are covariant derivatives of ~p E C =(~ r) de- 
fined relative to the connection on ~ and the Levi-Civita connection on }t, 
the frame bundle (as described in Section 5). 

Now suppose we are given a Corresponding kink theory. If F does not 
depend on r then we can immediately write down a corresponding 
field equation for the kinked field ~(x), namely, 

F(  g,, b=, Voq~(x), V Vaq~(x) . . . .  ) = 0  (6.2) 

with x ~ M, q~ E C o~(~ T). The important point is that, although (6.1) may be 
linear, (6.2) will not be linear in any sense. 

For example, if we take F to be the function appropriate to Maxwell's 
equations (where b is given in terms of g) 

where 

(84)x 

= k + (V q0,,  + 

then (6.2), when applied to the kinked electromagnetism of Section 4.2 
gives, on writing out the covariant derivatives and simplifying, 

(6.3) 

The second equation is essentially nonlinear, the nonlinearity arising from 
the term L(%(0)-I) ,  in (5.1). [The semicolon in (6.3) denotes the usual 
covariant derivative, not Vr.] As with sine-Gordon theory, the nonlinearity 
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in (6.3) is not a mere perturbation of the straight theory, but an indication 
of the existence of kinked fields that cannot be deformed away. This gives 
rise to solitonlike phenomena: our "nonlinear electromagnetism" has glob- 
ally regular solutions that cannot die away with time. It appears that the 
simplest of such solutions should look like magnetic dipoles at spatial 
infinity, though no solution has yet been found explicitly. 

Note that Skyrme's theory (1971) has the form (6.2),since his B~, are 
our (VT~),,, (with /~ the derivative index and a indexing Lie algebra 
components). 

If the field equations (6.1) involve q~ as well as its derivatives, there is 
no longer an immediate generalization to kinked theories. But in many 
cases there is still an eminently reasonable generalization. For example, 
consider again the case where E t consists of bivector fields and E r of 
Lorentz-tensor fields; but now suppose the field equations for the straight 
theory are the Klein-Gordon equations 

A natural generalization of this to the corresponding kink theory is then 

( g ~  V ~ V > ) ~ -  m+t+l = 0 

in which the term 6[vs] is a component of the invariantly defined object 
[d(Tr~)] ~, where X~;~ r is the map from T*(~x)-~sox(1,3 ) defined by the 
natural inner product on the Lie algebra s%(1, 3) of the fiber cx = or-l(x) 
of E Aa. This example, which easily extends to a kink theory with fiber 
SO(p, q) or SO(n), generalizes sine-Gordon theory for which the fiber is 
SO(2). 
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